A Synthetic Indifferentiability Analysis of Interleaved Double-Key Even-Mansour Ciphers

نویسندگان

  • Chun Guo
  • Dongdai Lin
چکیده

Iterated Even-Mansour scheme (IEM) is a generalization of the basic 1-round proposal (ASIACRYPT ’91). The scheme can use one key, two keys, or completely independent keys. Most of the published security proofs for IEM against relate-key and chosen-key attacks focus on the case where all the round-keys are derived from a single master key. Whereas results beyond this barrier are relevant to the cryptographic problem whether a secure blockcipher with key-size twice the block-size can be built by mixing two relatively independent keys into IEM and iterating sufficiently many rounds, and this strategy actually has been used in designing blockciphers for a long-time. This work makes the first step towards breaking this barrier and considers IEM with Interleaved Double independent round-keys: IDEMr((k1, k2),m) = ki ⊕ (Pr(. . . k1 ⊕ P2(k2 ⊕ P1(k1 ⊕m)) . . .)), where i = 2 when r is odd, and i = 1 when r is even. As results, this work proves that 15 rounds can achieve (full) indifferentiability from an ideal cipher with O(q/2) security bound. This work also proves that 7 rounds is sufficient and necessary to achieve sequential-indifferentiability (a notion introduced at TCC 2012) with O(q/2) security bound, so that IDEM7 is already correlation intractable and secure against any attack that exploits evasive relations between its input-output pairs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Understanding the Known-Key Security of Block Ciphers

Known-key distinguishers for block ciphers were proposed by Knudsen and Rijmen at ASIACRYPT 2007 and have been a major research topic in cryptanalysis since then. A formalization of known-key attacks in general is known to be difficult. In this paper, we tackle this problem for the case of block ciphers based on ideal components such as random permutations and random functions as well as propos...

متن کامل

The Related-Key Security of Iterated Even-Mansour Ciphers

The simplicity and widespread use of blockciphers based on the iterated Even–Mansour (EM) construction has sparked recent interest in the theoretical study of their security. Previous work has established their strong pseudorandom permutation and indifferentiability properties, with some matching lower bounds presented to demonstrate tightness. In this work we initiate the study of the EM ciphe...

متن کامل

Strengthening the Known-Key Security Notion for Block Ciphers

We reconsider the formalization of known-key attacks against ideal primitive-based block ciphers. This was previously tackled by Andreeva, Bogdanov, and Mennink (FSE 2013), who introduced the notion of known-key indifferentiability. Our starting point is the observation, previously made by Cogliati and Seurin (EUROCRYPT 2015), that this notion, which considers only a single known key available ...

متن کامل

Security of Even-Mansour Ciphers under Key-Dependent Messages

The iterated Even–Mansour (EM) ciphers form the basis of many blockcipher designs. Several results have established their security in the CPA/CCA models, under related-key attacks, and in the indifferentiability framework. In this work, we study the Even–Mansour ciphers under key-dependent message (KDM) attacks. KDM security is particularly relevant for blockciphers since non-expanding mechanis...

متن کامل

Indifferentiability of 3-Round Even-Mansour with Random Oracle Key Derivation

We revisit the t-round Even-Mansour (EM) scheme with random oracle key derivation previously considered by Andreeva et al. (CRYPTO 2013), namely, xork ◦Pt ◦ xork ◦ . . . ◦ xork ◦P2 ◦ xork ◦P1 ◦ xork, where P1, . . . ,Pt stand for t independent n-bit random permutations, xork is the operation of xoring with the n-bit round-key k = H(K) for a κ-to-n-bit bit random oracle H on a κ-bit main key K. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015